The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression
نویسندگان
چکیده
BACKGROUND In this study we explored the role of microRNAs (miRNAs) as mediators of leukemogenic effects of the fusion gene MLL-AF9, which results from a frequent chromosomal translocation in infant and monoblastic acute myeloid leukemia (AML). METHODS We performed a specific and efficient knockdown of endogenous MLL-AF9 in the human monoblastic AML cell line THP1. RESULTS The knockdown associated miRNA expression profile revealed 21 MLL-AF9 dependently expressed miRNAs. Gene ontology analyses of target genes suggested an impact of these miRNAs on downstream gene regulation via targeting of transcriptional modulators as well as involvement in many functions important for leukemia maintenance as e.g. myeloid differentiation, cell cycle and stem cell maintenance. Furthermore, we identified one of the most intensely repressed miRNAs, miR-511, to raise CCL2 expression (a chemokine ligand important for immunosurveillance), directly target cyclin D1, inhibit cell cycle progression, increase cellular migration and promote monoblastic differentiation. With these effects, miR-511 may have a therapeutic potential as a pro-differentiation agent as well as in leukemia vaccination approaches. CONCLUSIONS Our study provides new insights into the understanding of miRNAs as functional mediators of the leukemogenic fusion gene MLL-AF9 and opens new opportunities to further investigate specific therapeutic options for AML via the miRNA level.
منابع مشابه
Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here, we show that MLL normally regulates expression of mir-196b, a hematopoietic microRNA located within the HoxA cluster, in a pattern similar to that of the surrounding 5' Hox genes, Hoxa9 and Hoxa10, during emb...
متن کاملmiR-150 blocks MLL-AF9-associated leukemia through oncogene repression.
UNLABELLED The microRNA miR-150, a critical regulator of hematopoiesis, is downregulated in mixed-lineage leukemia (MLL). In this study, miR-150 acts as a potent leukemic tumor suppressor by blocking the oncogenic properties of leukemic cells. By using MLL-AF9-transformed cells, we demonstrate that ectopic expression of miR-150 inhibits blast colony formation, cell growth, and increases apoptos...
متن کاملMicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4
Objective(s):MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microR...
متن کاملThe trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia.
Trithorax and polycomb group proteins antagonistically regulate the transcription of many genes, and cancer can result from the disruption of this regulation. Deregulation of trithorax function occurs through chromosomal translocations involving the trithorax gene MLL, leading to the expression of MLL fusion proteins and acute leukemia. It is poorly understood how MLL fusion proteins block diff...
متن کاملApoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division.
Activation of apoptosis introduces a site-specific break within intron 11 of the MLL gene. Using the CD95 apoptotic signaling pathway in human lymphoblastoid cells, the 5' fragment of MLL undergoes translocation to intron 4 of AF9 and the proleukemogenic MLL-AF9 fusion gene created is transcribed. Both the breaks in MLL and transcription of the MLL-AF9 fusion gene are suppressed in the presence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2016